Author: pa

Trim Optimization

Trimmopt_DiagrammTrimmopt_Schiff

The trim of a ship influences the power consumption. Through an optimal trim several percent power savings can often be achieved.

Trim optimisation tests have already been carried out as standard procedure since 1970. As a result of the R & D project “Effective Trim Optimisation for Cargo Ships” [1] it has been possible to improve the predicting methods of power savings (calculated trim optimisation) as well as the experimental trim optimisation. The methods have different approaches from a purely statistical analysis of extensive model test series up to CFD simulations of entire trim matrices:

  • Prediction of the resistance of the ship for different draughts with or without combinations of various trim states using the resistance method according to Danckwardt and / or the SVA-LSR method
  • Formulas for determining the influence of partial discharging and / or trimming characteristic values on the propulsion
  • Hybrid procedure: Predicting of resistance and propulsion for partial discharging and / or trimming by coupling parts of the process of resistance according to Danckwardt / SVA LSR method with experimental results
  • Trim optimisation through pilot projects (EFD)
  • Trim optimisation through CFD calculations (CFD)

As a result, master and officers may set the optimum trim condition for the ship using the information provided by the methods mentioned above. The 3D contour plot shows an example of the dependence of the power saving on displacement and trim.

 

Context Related References / Research Projects

[1] Heinke, C.: Effektive Trimmoptimierung für Frachtschiffe, Bericht 4394, Schiffbau-Versuchsanstalt Potsdam GmbH, Juni 2015, Abschlussbericht

Slamming

Slamming_Diag

Slamming_Modell_alt

Slamming_Modell_neu

For slamming tests, a hydraulic slamming simulator was developed in the SVA. With the help of this system, the model is made to heave and pitch and produce coupled motions using two longitudinally arranged, vertically movable, hydraulic pistons. Depending on the model size, amplitudes up to 0.1m are reached at frequencies up to 2Hz. Thus slamming loads can be simulated, in which the critical immersion speeds are significantly exceeded. Both hull slamming of planing boats and bow flare slamming on all types of vessels with significant bulkhead failure are examined primarily in the bow area. The system allows the simulation of regular and irregular movements. The advantages over slamming measurements in a conventional sea state tests of the targeted replication of slamming scenarios is that defined immersion conditions can be assigned, and also in the exact reproducibility of the experimental conditions.

The equiping of models with miniature pressure sensors of different sizes allows the measurement of slamming pressures on vulnerable positions of the hull in the model test under extreme sea conditions, both when driving and when stationary. Moreover, slamming pressures can also be measured with regular seakeeping tests.

Slamming phenomena are also simulated with existing CFD tools. The UTHLANDE program serves to determine slamming prevalence. For a quick estimate of slamming pressures the SVA has developed a simplified procedure. It is based on results of systematic model tests and allows the determination of slamming pressure for any hull shape, for a given speed and location on the vessel. An important parameter is the velocity normal to the hull and the fluid at the point of interest of the hull surface. Areas with air entrapment (hull slamming) can therefore not be detected.

As a result, the processing of various R &  D projects [1], [2], the [3] SVA has a wealth of experience in investigating slamming phenomena.

 

Context Related References / Research Projects

[1] Fröhlich, M.: Einsatz eines Schwingungsoszillators auf hydraulischer Basis zur Untersuchung der Slammingbelastung von Schiffen, STG-Sprechtag „Schiffe im Seegang“, Hamburg, Oktober 1998
[2] Fröhlich, M.: Slammingbelastungen von Schiffen, Freitagsvorlesung an der TU-Berlin, 25.06.99
[3] Fröhlich, M.; Hellwig, K.: Numerical and experimental investigations of slamming loads for fast ships, HIPER`01, Hamburg May 2001
[4] Fröhlich, M.; Hellwig, K.: Untersuchungen zum Slammingverhalten schneller Schiffe, 6. Schiffbautag Mecklenburg-Vorpommern, Rostock, Oktober 2002

Roll Damping

Rolldamping_Winkel_Waveheight_mRand

Rolldamping_Konstr_small

In recent years particularly, investigations of the roll behaviour, especially the roll damping of ships, has developed into a special field of hydrodynamic research. Due to high deck loading, modern container ships have low stability reserves and, in high seas, are exposed to the risk of extreme rolling motions. The development of specialised vessels and supply ships for the offshore sector is characterised by strict specifications in terms of positioning and motion stabilisation to reduce the risks of coming along side under rough conditions.

The SVA Potsdam has advanced testing methods along with the latest associated measurement methods. The SVA has offered innovative methods for improving and optimising the rolling behaviour of ships, mainly for stabiliser fins, rudders, Voith-Schneider equipment and roll damping tanks.

The SVA has a system that causes forced rolling motions of ship models with variation of rolling amplitude and frequency, with and without forward motion. By doing this, the rolling moment can be measured.

Parameterically excited rolling can be simulated with the ROLF method (nonlinear strip method), which has been integrated into the UTHLANDE program system. For a quick estimate of the risk of a ship with respect to parameterically excited oscillations, an SVA developed method is used which provides, based on fluctuations in metacentric heights, an indicator as to whether a rollover impulse is to be expected for a combination of ship speed, wave height and wavelength.

For the selection of roll damping tanks, calculation methods are available that allow both Frahm and box tanks to be analysed.

For large yachts and cruise ships in particular, stabiliser fin systems are available with corresponding geometries which damp rolling even while the vessel is stationary. The roll damping rates of these and similar systems are determined in the towing tank by applying different wave conditions to the model.

    

 

Context Related References / Research Projects

[1] Fröhlich, M., Nietzschmann, T., Wuttke, H.: Untersuchung der parametererregten Rollschwingungen bei modernen Containerschiffen, Kolloquium Schiffstechnik, Uni Rostock, 21 Januar 2011
[2] Fröhlich, M., Schumann, C.: Simulationsverfahren zur effizienten Bestimmung großer Rollbewegungen von Schiffen, 5. SVA-Forschungsforum, Potsdam, 26. Januar 2012
[3] Fröhlich, M.: Experimentelle und theoretische Untersuchungen zur Rolldämfung, 6. SVA-Forschungsforum, Potsdam, 31. Januar 2013
[4] Fröhlich, M.: ROLLTANK – Weiterentwicklung und Validierung von theoretischen Verfahren zur Vorhersage der Rollbewegung von Schiffen unter Berücksichtigung von Rolldämpfungstanks, 8. SVA-Forschungsforum, Potsdam, 29. Januar 2015

Seakeeping Tests

Seegang_Modell_in_irreg_Seegang

Seegang_Kabelleger

The seakeeping of ships and offshore structures is determined by model tests and numerical simulations. Model tests in a seaway are carried out in the towing tank. For this purpose, a hydraulic wave generator is available with which various wave spectra as well as regular waves and transient wave packets can be generated. Significant wave heights are possible in model scale to 0.23 m and at modal periods up to 2.5 s. For a model scale of about 1:40, wave conditions can be simulated up to gale force with about 10 m significant wave height at 18 s modal period in ship scale. To avoid unwanted wave reflections there is a beach with a natural inclination and an additional lateral wave damper to absorb diagonal waves. Sea state testing done with free-running, self-propelled models is used for detecting movements and accelerations, the shipping of water, relative motion, propeller ventilation and slamming phenomena. The effectiveness of controlled, zero speed, fin stabilisers, regarding their roll damping is tested with models having no forward motion. The determination of force coefficients is done in experiments with a tethered model.

Seakeeping tests can be carried out in countering and following seas as well as quartering seas at an angle of up to 35° off course. The latter takes the form of zigzag driving, which is recognised by the classification societies as an experimental technique. The motion behaviour of tested objects is detected with a high resolution optical tracking system. This system allows contactless measurement of the coupled motions of two-body systems in all 6 degrees of freedom as well as speed and acceleration at defined positions.

For numerical simulations of sea keeping the UTHLANDE program system is available. Based on linear and non-linear strip method, this system allows the calculation of the motions and loads of mono hull ships and catamarans for all 6 degrees of freedom. The program provides the statistical characteristics (short and long term statistics) for long and short crested seas represented in Cartesian or polar diagrams and a video animation based on a “ship motion viewer”. The process provides valuable insights by varying different sea state specific parameters in the optimisation process and serves as a valuable support of model experiments.

Seegang_RAO_ZSeegang_RAO_PitchSeegang_Polarplot

 

Context Related References / Research Projects

[1] Fröhlich, M.: Experimentelle und rechnerische Analyse von Slammingbelastungen im Seegang, Ermittlung von Koeffizienten zur Abschätzung von Slammingbelastungen, SVA-Potsdam, 16.02.2000
[2] Fröhlich, M.: Ermittlung der Wasserübernahme bei Schiffen im Seegang mit Hilfe der Anwendung moderner Ultraschalltechnik, 1. SVA-Forschungsforum, Potsdam, 31. Januar 2008
[3] Fröhlich, M.: Wasserübernahme und parametererregte Rollschwingungen bei Schiffen im Seegang, Mitgliederversammlung, Verein zur Förderung der SVA e.V., 18. Dezember 2008

Manoeuvering

Manoeuv_DP-Berechnung_uthlande

Manoeuv_IMO_Versuch

The manoeuvrability and transverse stability of a ship are crucial criteria for the safe operation of a vessel. Therefore, studying the manoeuvring behavior of ships is among the core tasks of the SVA Potsdam. The focus is both on the implementation of model tests as well as simulation calculations. Manoeuvring trials are realised either with free-running models in the towing tank (an evaluation is carried out via a system identification) or on open water. Any desired manoeuvres, such as turning circles, Z manoeuvre, Williamson-turn, and spiral curves, are investigated. In open waters, model sizes up to 8 m are tested. Submersibles are tested both in free running and at a SUBPMM plant. Manoeuvre testing is performed for conventional ship types and for special vessels such as fast ships (semi-planing and planing), double-ended ferries and submersibles. Manoeuvre simulations are based on both tests and calculations. Among other things, the SVA developed software environment, UTHLANDE, can be used to simulate the manoeuvrability of ships in a seaway. This is the given approach particularly in the design stage, if different variants are to be compared.

Depending on the task, the customer receives, as a result of the criteria for the IMO standard for Ship Manoeuvrability (IMO Resolution MSC. 137 (76)), statements about the yaw stability, the loss of speed, spiral curves, etc.

Full-scale measurements are performed with our own team and recording system (DGPS). In addition to determining the manoeuvring behaviour of full-scale and measured miles trials, the SVA Potsdam executes, performance, vibration and noise measurements, and cavitation observations.

 

Manoeuv_TurnrateManoeuv_RudderangleManoeuv_Freiland_smallManoeuv_OSV

 

Context Related References / Research Projects

[1] Steinwand, M.: SLOWMAN – Manövrieren bei kleinen Geschwindigkeiten, 4. SVA-Forschungsforum „Theoria cum Praxi“, Potsdam, 27. Januar 2011
[2] Steinwand, M.: Manoeuvrability of a Single Screw Ship with Pod, HYDRONAV’03, Gdansk 22. – 23. October 2003
[3] Steinwand, M.: Maßstabseffekte bei der Bestimmung des Manövrierverhaltens von Unterwasserfahrzeugen durch Modellversuche, 2. SVA-Forschungsforum „Theoria cum Praxi“, Potsdam, 29. Januar 2009
[4] Weede, H.: System identification of manoeuvring ship models, Report accompanying the lecture hold at SVA on Nov 26, 2001

Wake Field

wake_small_mRand

XXL_ship_with_probe_small

For a good propeller design it is necessary to have detailed knowledge of the nominal wake field and also the velocity distribution in the propeller plane. For experimental determination of wake fields, 5-hole ball probes, LDA or PIV (“Particle Image Velocimetry”), are used. It is standard that a 5-hole ball probe is used, offering the following options:

  • Measurements in the propeller plane
  • Measurements at the point of appendages, ie. the shaft struts
  • With the probe, any coordinates can be approached
  • 3-Dimensional wake field measurement

The standard measurement of a wake field for single screw vessels is carried out on 6 radii respectively, every 5 °. For measurements behind podded drives and shaft struts among others, the resolution is adjusted accordingly.

In addition to the experimental determination of the wake field, a calculation based on CFD simulation is possible. An advantage of a CFD simulation is the calculation of the velocity field for the Reynolds number of the full-size version.

 

Context Related References / Research Projects

[1] Anschau, P., Mach, K.-P.: Application of a Stereo PIV System for Investigations of Flow Fields in Towing Tank and Cavitation Tunnel, HYDRONAV 2007, Wroclaw, Polen, September 2007
[2] Grabert, R.: Der Einfluss unterschiedlichster Betriebszustände eines Schiffes auf das Nachstromfeld, 3. SVA-Forschungsforum, Potsdam, 28. Januar 2010:
[3] Lübke, L.: Formoptimierung unter Berücksichtigung der Charakteristik des Nachstromfeldes, 4. SVA-Forschungsforum, Potsdam, 27. Januar 2011