Author: pa

Kay Domke (SVA) appointed to ITTC’s Seakeeping Committee

Mr. Kay Domke, Division Manager Dynamics & Acoustics, has been appointed to the Seakeeping Committee of the ITTC for the 30th period of the International Towing Tank Conference. Tasks include consideration of the interim guidelines for determining the minimum propulsion power required to maintain the maneuverability of ships in adverse conditions in accordance with MEPC.1/Circ.850/ Rev.2. The Seeping Committee is composed of scientists from all continents and is primarily concerned with the behavior of ships in sea states. SVA is pleased with Mr. Domke for this honorable appointment.

DigitalSOW
(06/2021 – 12/2023)

The project aims to demonstrate that autonomous inland navigation is possible and that autonomous vehicles make inland navigation economically viable even with smaller units.
The project objective is to provide a defined test field environment (sections of the Spree-Oder-Wasserstraße (SOW)) for research on autonomous and networked water vehicles, especially with regard to a new type of city logistics based on autonomously operating and electrically powered water vehicles. Continue reading “DigitalSOW
(06/2021 – 12/2023)”

50 Years of Cavitation Research at SVA Potsdam

On the occasion of the 50th anniversary of the cavitation tunnel of SVA Potsdam, we publish a series of articles (partly in German) on cavitation research from the archives of SVA.

  1. (April 14th, 2021) “Gutsche 1956, Kavitationsprobleme an Schiffsschrauben”
  2. (April 19th, 2021) “Gutsche 1959, Düsenpropeller in Theorie und Experiment”
  3. (April 22nd, 2021) “Gutsche 1962, Der Einfluss der Kavitation auf die Profileigenschaften von Propellerblattschnitten”
  4. (April 26th, 2021) “Gutsche 1964, Untersuchung von Schiffsschrauben in schräger Anströmung”
  5. (April 29th, 2021) “Schröder 1967, Wirkungsgrad von Düsenpropellern mit unterschiedlicher Düsen-und Propellerform”
  6. (May 3rd, 2021) “Edel 1971, Zum Entwurf gegenläufiger Propeller nach der Theorie von Lerbs”
  7. (May 6th, 2021) “Schmidt 1972, Einfluss der Reynoldszahl und der Rauhigkeit auf die Propellercharakteristik”
  8. (May 11th, 2021) “Dörp 1974, Propeller mit voller Saugseitenkavitation”
  9. (May 14th, 2021) “Mehmel 1979, Meßeinrichtung für den Kavitationskanal zur Ermittlung der vom Propeller ausgehenden Druckimpulse”
  10. (May 17th, 2021) “Wagner, Mehmel 1980, Entwicklung von Propellern mit guten Gebrauchseigenschaften”
  11. (May, 21st, 2021) “Georgijewskaja, Mawljudow, Mehmel 1981, Methode zur Vorhersage der Kavitationserosion an Schiffspropellern”
  12. (May 25th, 2021) “Mehmel 1983, Einfluss von Flügelgeometrie und Nachstrom auf die Druckimpulse”
  13. (May 28th, 2021) “Selke 1983, Erprobung der großen Messstrecke des Kavitationstunnels K15A der SVA”
  14. (May 31st, 2021) “Schröder 1984, Modellversuche an Propellern für Querstrahlruder”
  15. (June 7th, 2021) “Selke 1984, Bestimmung der hydrodynamischen Flügelverstellmomente von Verstellpropellern”
  16. (June 10th, 2021) “Haimov, Gerchev, Schmidt 1986, Belastungsschwankungen am Propeller eines Frachtschiffes mit großem Propeller”
  17. (June 14th, 2021) “Schmidt 1987, Propellererregte Druckschwankungen an Frachtschiffen mit großen langsamlaufenden Propellern”
  18. (June 17th, 2021) “Böer, Selke, Junglewitz 1990, Einsatz der LDA-Messtechnik bei hydrodynamischen Untersuchungen am Kavitationstunnel”
  19. (June 21st, 2021) “Selke, Heinke 1990, Propelleruntersuchungen im Kavitationstunnel der Schiffbau-Versuchsanstalt Potsdam”
  20. (June 24th, 2021) “Schmidt, Selke, Gerchev 1992, Prediction of Propeller-Induced Pressure Pulses”
  21. (June 28th, 2021) “Abdel-Maksoud et. al. 1995, Numerische Berechnung der viskosen Strömung um einen rotierenden Propeller”
  22. (July 1st, 2021) “Heinke, Philipp 1995, Development of a Skew Blade Shape for a Ducted CPP”
  23. (July 5th, 2021) “Schulze 1995, Das Propeller Entwurfs- und Optimierungskonzept der SVA”
  24. (July 8th, 2021) “Schulze 1997, Globale Optimierung von Propellern”
  25. (July 12th, 2021) “Bertelo, Schulze, et.al. 1998, LIUTO Development and Optimisation of the Propulsion System”
  26. (July 15th, 2021) “Bohm, Jürgens 1998, Linear-Jet – A Propulsion System for fast Ships”
  27. (July 19th, 2021) “Abdel-Maksoud, Heinke 1999, Viscous Flow Around Modern Propulsion Systems”
  28. (July 22nd, 2021) “Heinke 2000, Untersuchung von Schicht-, Blasen- und Wolkenkavitation und der damit verbundenen Erosionsprobleme”
  29. (July 25th, 2021) “Kaul, Heinke, Maksoud 2000, Hydrodynamische Optimierung von Podded Drives”
  30. (July 29th, 2021) “Heinke, Abdel-Maksoud 2001, Untersuchung der Umströmung von Düsenpropellern”
  31. (August 2nd, 2021) “Heinke 2001, Podded drives for navy ships”
  32. (August 5th, 2021) “Abdel-Maksoud, Heinke 2002, Scale Effects on Ducted Propellers”
  33. (August 9th, 2021) “Abdel-Maksoud 2003, Numerical and Experimental Study of Cavitation Behaviour of a Propeller”
  34. (August 12th, 2021) “Heinke 2004, Investigations about the Forces and Moments at Podded Drives”
  35. (August 16th, 2021) “Maksoud et al. 2004, Numerical and Experimental Investigation of the Hub Vortex Flow of a Marine Propeller”
  36. (August 19th, 2021) “Heinke, Rieck, Steinwand 2005, Hocheffektive Ruder”
  37. (August 23rd, 2021) “Jürgens, Heinke 2006, Untersuchung tiefgetauchter Waterjets”
  38. (August 26th, 2021) “Anschau, Mach 2007, A Stereo PIV System for Investigations of Flow Fields in Towing Tank and Cavitation Tunnel”
  39. (August 30th, 2021) “Anschau, Lamprecht, Mach, Rieck 2007, Numerische und experimentelle Untersuchung eines Propellers in 4 Quadranten”
  40. (September 2nd, 2021) “Mertes, Heinke 2008, Aspects of design procedure for Propellers Providing Maximum Bollard Pull”
  41. (September 6th, 2021) “Heinke, Schulze, Steinwand 2009, SVA High-Speed Propeller Series”
  42. (September 9th, 2021) “Jürgens, Heinke 2009, Voith Schneider Propeller (VSP) – Investigations of the cavitation behaviour”
  43. (September 10th, 2021) “Rieck, et al. 2009, Druckschwankungen höherer Ordnung am Hinterschiff”
  44. (September 13th, 2021) “Heinke, Hellwig-Rieck 2011, Investigation of Scale Effects on Ships with a WED or VGF”
  45. (September 14th, 2021) “Schulze, Weber 2011, The new FORTJES Z-drive from REINTJES with contra rotating propellers”
  46. (September 15th, 2021) “Kleinwächter, Hellwig-Rieck, Heinke 2015, PIV as a Novel Full-Scale Measurement Technique in Cavitation Research”
  47. (September 16th, 2021) “Berger, Klose 2016, Efficient Numerical Investigation of Propeller Cavitation Phenomena causing Higher-Order Hull Pressure Fluctuations”
  48. (September 17th, 2021) “Schulze 2016, A new friction correction method for open water characteristics of propellers”
  49. (September 20th, 2021) “Kleinsorge, Klose 2017, Case Study for the Determination of Propeller Emitted Noise by Experimental and Computational Methods”
  50. (September 21st, 2021) “Klose, Schulze, Hellwig-Rieck 2017, Investigation of Prediction Methods for Tip Rake Propellers”
  51. (September 22nd, 2021) “Viitanen, Lübke, Klose et al. 2017, CFD and CHA simulation of underwater noise induced by a marine propeller in two-phase flows”
  52. (September 23rd, 2021) “Schulze 2018, Analyse des Hochfrequenzspektrums von Propellergeräuschen zur Detektion von Kavitationserosion”
  53. (September 24th, 2021) “Heinke, Hellwig-Rieck 2019, Lübke Open Water Characteristics of Propellers with Short Chord Lengths”
  54. (September 27th, 2021) “Schulze 2019, Entwurf geräuschoptimierter Propeller für Mehrschrauber”
  55. (September 28th, 2021) “Schulze 2019, Sea-Trial Auswertung mit eingeschränkten Informationen und dynamischen Einflüssen”

ProCup2
(01/2021 – 06/2023)

In the R&D project “Propeller Cupping”, the development of the new parametric SVA profile family laid the foundation for a standardised use of cup profiles in propeller design by extending the conventional geometry definition to include cup profiles up to supercavitating profiles.
In the project, this SVA profile family is to be made usable for propeller design for fast ships with large shaft inclination. Propellers with cup are to be critically analysed in order to find possibilities for improving the cavitation, erosion and operating behaviour. Essential parameters and the correct optimisation criteria for profile optimisation in propeller design must be worked out in order to achieve the objective of significantly improving the performance of the propeller at low cavitation numbers. Continue reading “ProCup2
(01/2021 – 06/2023)”

DEffProForm
(12/2020 – 06/23)

The research project pools extensive experience in the design and analysis of modern marine propulsion systems in order to further develop unconventional propeller shapes that deviate significantly from conventional geometry variants. These offer the propeller designer additional design options and aim to achieve improved hydrodynamic characteristics in terms of efficiency and noise emission. Continue reading “DEffProForm
(12/2020 – 06/23)”